LA

Static analysis tool C-STAT

Ensuring code quality through static analysis

Static analysis helps you to find potential issues in your code by doing an analysis on the source code
level. The static code analysis tool C-STAT is completely integrated in the IAR

Embedded Workbench IDE and provides an easy way to make sure your application complies with the
coding standards defined by MISRA and hundreds of other checks derived from CWE and CERT.

Key Highlight Features

e Analysis of C and C++ code

e Includes almost 700 checks in total, some comply with rules as defined by MISRA C:2012, MISRA C++:2008 and
MISRA C:2004

e More than 250 checks mapping to issues covered by CWE

e Checks compliance with the coding standard CERT C for secure coding

e Fully integrated with the IAR Embedded Workbench IDE

e Comprehensive and detailed error information

e Fast execution

e Available for most IAR Embedded Workbench products

C-STAT checks code compliance with industry standards MISRA, CWE and CERT C/C++

C-STAT performs a number of security checks for compliance with the MISRA rulesets and rules as defined by
the CERT C/C++ Secure Coding Standards as well as for a number of weaknesses as

defined by CWE. To further simplify compliance tasks, C-STAT provides output that is consistent with the naming
of weaknesses in CWE.

MISRA (the Motor Industry Software Reliability Association) rules has spread over the world and into

different industry segments, and the ruleset is now the most widely used C subset in the embedded industry.
MISRA-C:2012, which is the latest version, contains 143 rules and 16 so called directives. The rules are

classified as mandatory, required or advisory and cover such areas as avoiding possible compiler differences like
integer size, avoiding using functions and constructs that are prone to failure, limiting code complexity, and ensuring
that the code is maintainable for example by using naming conventions and commenting.

CWE (the Common Weakness Enumeration) is a community-developed dictionary with descriptions of the
weakness and its potential consequences as well as potential mitigations, code samples, taxonomies and
references. It is intended to help gain a better understanding and management of software weaknesses as well as to
enable more effective selection and use of software security tools and services that can find these weaknesses.

CERT provides rulesets for secure coding in C as well as in C++. Each guideline consists of a title, a description, a
non-compliant code example and examples of compliant solutions. The standards include guidelines for avoiding
coding and implementation errors, as well as low-level design

errors. The aim of the standards is to eliminate insecure coding practices and undefined behaviors that can lead to
exploitable vulnerabilities.

7 oy
| FadBsp [1AR Embedded Workbench Help for ARM SE= m RHS argument s in interval [0INF] which is out of range . ATH-shift-bounds Medit
| | LadsMitF] w5 = ' RHS argument s in interval [0LINF] which is out of range .. ATH-shiftbounds Medil
| B stm32f Lﬂ a(:;k 5 kﬁ>"i H@ m RHS argurmentis in interval [IINF] which is out of range . ATH-shift-bounds Medi
| Lm i omss ide Locate Back Foward Home

= W stm32iochal_adc_exc (6 messages)
L.E-STM‘BZH»(Cortorts| 100ex | Soorch | Fovortes = RS argument is in nterval [0INF which is out of range .. ATH-shiftbounds Medii
& Example

< > RHS argumentis ininterval [0INFwhich is outof range . ATH-shittboundls M
5 Ouput IAR SyStemS L RHS argumentis in interval [0INF which is outof range . ATH-shiftbounds Medil
= RHS argumentis in inferval [0 NF] which is outof range . ATH-shiftbounds Medi
 RHS argumentis in interval [0INF]which is outof range .. ATH-shittbounds Medi
' RHS argumentis in interval [0INF which is outof range . ATH-shittbounds Medi
% 1 sm32fdo,hel_dma.c (27 messages)
= 11 stm32iochal_flash_exc (1 message)
ARR-inv-index-ptr-pos H-‘R?S argumentis in interval [0INF which is outof range .. ATH-shifrbounds Medi
= 1 st

i

it

CSTAT che cks - ARR-invindex-pir-pos

Synopsis

=

A pointer to an amay is potentially used outside the = Anmay painter GPIOK is clvith inclex [32.33] whi... ARReinvindexcptpos Medi

amay bounds % 1 stn32iohal_rece (22 messages)

= 11 sim32fdohel_ree_exc (7 messages)

Enabled by default RHS argumentis in interval [0INF]which is outof range .. ATH-shittbounds Medi
' RHS argumentis in interval [0INF] which is outof range . ATH-shiftbounds Mexdi
 RHS argumentis in inferval [0INF which is outof range . ATH-shi-bounds Medi
 RHS argumentis in interval [0INF which is outof range . ATH-shitebounds Medi .

% m Possible civision by 0. Divisor has potential range [053] ATH-div-lpos High -

% m Possible civision by 0. Divisor has potential range [163] ATH-div-lpos High

% m Possible civision by 0. Divisor has potential range [0.7] ATH-div-ipos High

MeGumplediom = 11 sim32tonucleac (1 message) //
= Value sssigned to varishle dvalue' is nev... RED-unused-assign _ Low

Yes

Severity/Certainty

\
i L
Fully integrated into the IDE
C-STAT is fully integrated into the IDE and is as simple to use as the regular build tools. No need for complex tool
setup and no struggle with language support and general build issues. The rules in the different standards overlap
and complement each other. No coding standard includes all listings in CWE since not all of them are present in one
coding language. Because of their mutually supportive roles it is wise, or even necessary, to consult all these instances
to make sure that the software is safe and secure. Regardless of which of the rulesets you are working with, C-STAT will
check that your code is compliant and all checks in C-STAT are thoroughly documented with references to the corre-
sponding entries in CWE and in the MISRA and CERT standards. You can select to check your code against rulesets as
well as against individual rules.
© Codennalysis | =
File Edit View Project Security Simulator Tools Window Help
NNE@ = xmi 5c e Q0 5 =< >R B@-=0 >
Workspace ¥ 2 X | cstatc X |mainc — ~
Flash Debug | &
Files & . -
o S T N N | int32 t Arr[d4] = (O, 1,2, 3}:
& app int32 t Arrl = 5;
| Blc_state - =
| L@ Bmainc
& i board
| F® Bier_stm321428ii_acac void certl(int i, int *b) {
l_E;‘Em’“*“ &T int a = i + b[++i]; //Do not depend on the order of evaluation for side effects
| & B starup_sim3zizaxs A printf("%d, %d4d", a, i); // CERT C
| B system_stm 32t }
|8 i StdPeriph_Driver
| @ o Library
| LB, gpac void cert?(void) {
Egigmam : static volatile int **ipp;
static int *ip;
static volatile int i = 0;
A printf ("i = %d.\n", 1i): ipp = &ip:; /* May produce a warning diagnostic */
ipp = (int**) &ips
ry *ipp = &i; //Do not access a volatile object through a nonvolatile reference
A if (*ip != 0) { /* Valid */
Overview|[Codeanalysis Library « e Y ! i 4
C-STAT Messages. v o>
Severity; Filter: Messages: 161
Message Check Severity File Line -
W c_statc (25 messages) c_state
= m Signed operation “++i' may overflow CERT-INT32-C_a High c_state 14
T ’xESéRTr\NT32'C,a geinsd I :
m Unspecified execution order between "++i* and other reference(s) to 'i' SPC-order CERT-EXP30-C_a Medium c_statc 14
= m Calling standard library function “printf without detecting and handling errors or casting explicitly t. CERT-ERR3I3-C_c High c_state 15
7 ’fgl‘umg standard library function " printf E:ii::i 12
=1 CQ\LHQLE‘:;Savd library function “printf without detecting and handling errors or casting explicity t.. CERT-ERR33-C_c High E:zt::i g
7 ’fgiumg standard library function " printf E:ii::i gg
A if (fipl=0)is false c_statc 26
-sﬁr;”\’u'?auwgdmssm staticvariahle ‘ip' MEN-stack-global CERT-DCL.. High E:ii?:i ;g
= ® The pointer ip is non-volatile and used to access a volatile object CERT-EXP32-C Low c_statc 26
Rader Thae %
o CERT-EXPI2-C ©_statc 26
™ Format string does notinclude size of string being consumed CERT-STR31-C_a. High c_statc 36
m Variable “eror_log'is uninitialized SPC-uninitvar-all High c_statc 36
@ m Variable ‘enor_log' may be uninitialized CERT-EXP33-C_a High c_statc 36
B ’f&iaa ot error_log' E:ii::i gg
= m Calling standard library funcion ‘sprintf' without detecting and handling errors CERT-ERR3I3C_a High c_state 36 -
Ready Errors 0, Warnings 0 Ln 14, Col 1 UTF-8 CAP NUM OVR 2=
IAR Embedded Workbench
IAR Embedded Workbench is a complete C/C++ development toolchain for embedded applications. The
toolchain offers leading code quality, outstanding optimizations for size and speed, as well as extensive debug
functionality with a fully integrated debugger with simulator and hardware debugging support. C-STAT is fully
integrated with the IAR Embedded Workbench IDE, which helps developers to ensure their code is safe and
of high quality at an early stage, which also aids companies to shorten their time to market as impact of errors
further down the line might be very time consuming and expensive.
/
;/

LG EVB Development — A~

